Publications using WannierBerri

Publications doing calculations with WannierBerri

[1]

Daniel Destraz, Lakshmi Das, Stepan S. Tsirkin, Yang Xu, Titus Neupert, J. Chang, A. Schilling, Adolfo G. Grushin, Joachim Kohlbrecher, Lukas Keller, Pascal Puphal, Ekaterina Pomjakushina, and Jonathan S. White. Magnetism and anomalous transport in the weyl semimetal pralge: possible route to axial gauge fields. npj Quantum Materials, 5(1):5, Jan 2020. URL: https://doi.org/10.1038/s41535-019-0207-7, doi:10.1038/s41535-019-0207-7.

[2]

R. González-Hernández, E. Tuiran, and B. Uribe. Quasinodal lines in rhombohedral magnetic materials. Physical Review B, 2021. doi:10.1103/PhysRevB.104.205128.

[3]

Nesta Benno Joseph and Awadhesh Narayan. Topological properties of bulk and bilayer 2m ws2: a first-principles study. Journal of Physics: Condensed Matter, 33(46):465001, sep 2021. URL: https://dx.doi.org/10.1088/1361-648X/ac1de1, doi:10.1088/1361-648X/ac1de1.

[4]

Nesta Benno Joseph, Saswata Roy, and Awadhesh Narayan. Tunable topology and berry curvature dipole in transition metal dichalcogenide janus monolayers. Materials Research Express, 8(12):124001, dec 2021. URL: https://dx.doi.org/10.1088/2053-1591/ac440b, doi:10.1088/2053-1591/ac440b.

[5]

P.M. Lenggenhager, X. Liu, S.S. Tsirkin, T. Neupert, and T. Bzdušek. From triple-point materials to multiband nodal links. Physical Review B, 2021. doi:10.1103/PhysRevB.103.L121101.

[6]

J.-M. Lihm and C.-H. Park. Wannier function perturbation theory: localized representation and interpolation of wave function perturbation. Physical Review X, 2021. doi:10.1103/PhysRevX.11.041053.

[7]

J. Seo, C. De, H. Ha, J.E. Lee, S. Park, J. Park, Y. Skourski, E.S. Choi, B. Kim, G.Y. Cho, H.W. Yeom, S.-W. Cheong, J.H. Kim, B.-J. Yang, K. Kim, and J.S. Kim. Colossal angular magnetoresistance in ferrimagnetic nodal-line semiconductors. Nature, 599(7886):576–581, 2021. doi:10.1038/s41586-021-04028-7.

[8]

D.-F. Shao, S.-H. Zhang, M. Li, C.-B. Eom, and E.Y. Tsymbal. Spin-neutral currents for spintronics. Nature Communications, 2021. doi:10.1038/s41467-021-26915-3.

[9]

L. Wang, T. Min, and K. Xia. First-principles study of the anomalous hall effect based on exact muffin-tin orbitals. Physical Review B, 2021. doi:10.1103/PhysRevB.103.054204.

[10]

A. Bandyopadhyay, N.B. Joseph, and A. Narayan. Electrically switchable giant berry curvature dipole in silicene, germanene and stanene. 2D Materials, 2022. doi:10.1088/2053-1583/ac6f63.

[11]

L. Chen, L. Pedesseau, Y. Léger, N. Bertru, J. Even, and C. Cornet. Antiphase boundaries in iii-v semiconductors: atomic configurations, band structures, and fermi levels. Phys. Rev. B, 106:165310, Oct 2022. URL: https://link.aps.org/doi/10.1103/PhysRevB.106.165310, doi:10.1103/PhysRevB.106.165310.

[12]

J.M. Duran-Pinilla, A.H. Romero, and A.C. Garcia-Castro. Chiral magnetism, lattice dynamics, and anomalous hall conductivity in v3aun antiferromagnetic antiperovskite. Physical Review Materials, 2022. doi:10.1103/PhysRevMaterials.6.125003.

[13]

M. Ghim and C.-H. Park. Converging tetrahedron method calculations for the nondissipative parts of spectral functions. Physical Review B, 2022. doi:10.1103/PhysRevB.106.075126.

[14]

H. Park, O. Heinonen, and I. Martin. First-principles study of magnetic states and the anomalous hall conductivity of mnb3 s6 (m=co, fe, mn, and ni) first-principles study of magnetic states . park, heinonen, and martin. Physical Review Materials, 2022. doi:10.1103/PhysRevMaterials.6.024201.

[15]

M. Park, G. Han, and S.H. Rhim. Anomalous hall effect in a compensated ferrimagnet: symmetry analysis for mn3al. Physical Review Research, 2022. doi:10.1103/PhysRevResearch.4.013215.

[16]

S. Roy and A. Narayan. Non-linear hall effect in multi-weyl semimetals. Journal of Physics Condensed Matter, 2022. doi:10.1088/1361-648X/ac8091.

[17]

G.K. Shukla, A.K. Jena, N. Shahi, K.K. Dubey, I. Rajput, S. Baral, K. Yadav, K. Mukherjee, A. Lakhani, K. Carva, S.-C. Lee, S. Bhattacharjee, and S. Singh. Atomic disorder and berry phase driven anomalous hall effect in a co2feal heusler compound. Physical Review B, 2022. doi:10.1103/PhysRevB.105.035124.

[18]

D. Torres-Amaris, A. Bautista-Hernandez, R. González-Hernández, A.H. Romero, and A.C. Garcia-Castro. Anomalous hall conductivity control in mn3nin antiperovskite by epitaxial strain along the kagome plane. Physical Review B, 2022. doi:10.1103/PhysRevB.106.195113.

[19]

L. Wang, K. Shen, S.S. Tsirkin, T. Min, and K. Xia. Crystal-induced transverse current in collinear antiferromagnetic γ-femn. Applied Physics Letters, 2022. doi:10.1063/5.0069504.

[20]

S. Zhang, Y. Wang, Q. Zeng, J. Shen, X. Zheng, J. Yang, Z. Wang, C. Xi, B. Wang, M. Zhou, R. Huang, H. Wei, Y. Yao, S. Wang, S.S.P. Parkin, C. Felser, E. Liu, and B. Shen. Scaling of berry-curvature monopole dominated large linear positive magnetoresistance. Proceedings of the National Academy of Sciences of the United States of America, 2022. doi:10.1073/pnas.2208505119.

[21]

L. Šmejkal, A.B. Hellenes, R. González-Hernández, J. Sinova, and T. Jungwirth. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling. Physical Review X, 2022. doi:10.1103/PhysRevX.12.011028.

[22]

Arka Bandyopadhyay, Nesta Benno Joseph, and Awadhesh Narayan. Berry curvature dipole and its strain engineering in layered phosphorene. 2023. arXiv:2310.20543.

[23]

A. Bhattacharya, V. Bhardwaj, M. Bhogra, B.K. Mani, U.V. Waghmare, and R. Chatterjee. First-principles theoretical analysis of magnetically tunable topological semimetallic states in antiferromagnetic dypdbi. Physical Review B, 2023. doi:10.1103/PhysRevB.107.075144.

[24]

M. Bosnar, A.Y. Vyazovskaya, E.K. Petrov, E.V. Chulkov, and M.M. Otrokov. High chern number van der waals magnetic topological multilayers mnbi2te4/hbn. npj 2D Materials and Applications, 2023. doi:10.1038/s41699-023-00396-y.

[25]

X.-J. Chen, B.-W. Zhang, D. Han, and Z.-C. Zhong. Electronic and topological properties of kagome lattice lav3si2. Tungsten, 5(3):317–324, 2023. doi:10.1007/s42864-022-00200-2.

[26]

Q. Guillet, L. Vojáček, D. Dosenovic, F. Ibrahim, H. Boukari, J. Li, F. Choueikani, P. Ohresser, A. Ouerghi, F. Mesple, V. Renard, J.-F. Jacquot, D. Jalabert, H. Okuno, M. Chshiev, C. Vergnaud, F. Bonell, A. Marty, and M. Jamet. Epitaxial van der waals heterostructures of cr2 te3 on two-dimensional materials. Physical Review Materials, 2023. doi:10.1103/PhysRevMaterials.7.054005.

[27]

Pushpendra Gupta, In Jun Park, Anupama Swain, Abhisek Mishra, Vivek P. Amin, and Subhankar Bedanta. Self-induced inverse spin Hall effect in La$_0.67$Sr$_0.33$MnO$_3$ films. 2023. arXiv:2310.06967.

[28]

N.T. Hai, J.-C. Wu, J.-P. Chou, and J. Pothan. Novel anomalous hall effect mechanism in ferrimagnetic gdco alloy. Journal of Applied Physics, 2023. doi:10.1063/5.0147302.

[29]

S. Karmakar, R. Biswas, and T. Saha-Dasgupta. Giant rashba effect and nonlinear anomalous hall conductivity in a two-dimensional molybdenum-based janus structure. Physical Review B, 2023. doi:10.1103/PhysRevB.107.075403.

[30]

E. Ketkar, Gaurav K. Shukla, Seung-Cheol Lee, Satadeep Bhattacharjee, and Sanjay Singh. Enhanced spin Hall conductivity and charge to spin conversion efficiency in strained orthorhombic SnSe through orbital selective hybridization. Applied Physics Letters, 123(18):182403, 10 2023. URL: https://doi.org/10.1063/5.0173339, arXiv:https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/5.0173339/18191196/182403\_1\_5.0173339.pdf, doi:10.1063/5.0173339.

[31]

M. Kondo, M. Ochi, R. Kurihara, A. Miyake, Y. Yamasaki, M. Tokunaga, H. Nakao, K. Kuroki, T. Kida, M. Hagiwara, H. Murakawa, N. Hanasaki, and H. Sakai. Field-tunable weyl points and large anomalous hall effect in the degenerate magnetic semiconductor eumg2 bi2. Physical Review B, 2023. doi:10.1103/PhysRevB.107.L121112.

[32]

Xiaoxiong Liu, Ivo Souza, and Stepan S. Tsirkin. Electrical magnetochiral anisotropy in trigonal tellurium from first principles. 2023. arXiv:2303.10164.

[33]

Xiaoxiong Liu, Stepan S. Tsirkin, and Ivo Souza. Covariant derivatives of berry-type quantities: application to nonlinear transport. 2023. arXiv:2303.10129.

[34]

S.B. Mishra and S. Coh. Spin contribution to the inverse faraday effect of nonmagnetic metals. Physical Review B, 2023. doi:10.1103/PhysRevB.107.214432.

[35]

N. Ontoso, C.K. Safeer, F. Herling, J. Ingla-Aynés, H. Yang, Z. Chi, B. Martin-Garcia, I. Robredo, M.G. Vergniory, F. De Juan, M. Reyes Calvo, L.E. Hueso, and F. Casanova. Unconventional charge-to-spin conversion in graphene/ mote2 van der waals heterostructures. Physical Review Applied, 2023. doi:10.1103/PhysRevApplied.19.014053.

[36]

S. Poncé, M. Royo, M. Stengel, N. Marzari, and M. Gibertini. Long-range electrostatic contribution to electron-phonon couplings and mobilities of two-dimensional and bulk materials. Physical Review B, 2023. doi:10.1103/PhysRevB.107.155424.

[37]

Z. Qian, J. Zhou, H. Wang, and S. Liu. Shift current response in elemental two-dimensional ferroelectrics. npj Computational Materials, 2023. doi:10.1038/s41524-023-01026-3.

[38]

H. Sawahata, N. Yamaguchi, S. Minami, and F. Ishii. First-principles calculation of anomalous hall and nernst conductivity by local berry phase. Physical Review B, 2023. doi:10.1103/PhysRevB.107.024404.

[39]

E. Triana-Ramírez, W. Ibarra-Hernandez, and A.C. Garcia-Castro. Anionic nickel and nitrogen effects in the chiral antiferromagnetic antiperovskite mn3nin. Physical Chemistry Chemical Physics, 25(21):14992–14999, 2023. doi:10.1039/d3cp00183k.

[40]

A.C. Tyner and P. Goswami. Spin-charge separation and quantum spin hall effect of β -bismuthene. Scientific Reports, 2023. doi:10.1038/s41598-023-38491-1.

[41]

Alexander C. Tyner and Pallab Goswami. Solitons and real-space screening of bulk topology of quantum materials. 2023. arXiv:2304.05424.

Publications just citing WannierBerri

['1]

J. Xiao and B. Yan. First-principles calculations for topological quantum materials. Nature Reviews Physics, 3(4):283–297, 2021. doi:10.1038/s42254-021-00292-8.

['2]

Ilias Samathrakis. Topological transport properties of ferromagnetic and antiferromagnetic materials. PhD thesis, Dissertation, Darmstadt, Technische Universität Darmstadt, 2022, 2022.

['3]

X.-Y. Wu, H. Liang, X.-S. Kong, Q. Gong, and L.-Y. Peng. Multiscale numerical tool for studying nonlinear dynamics in solids induced by strong laser pulses. Physical Review E, 2022. doi:10.1103/PhysRevE.105.055306.

['4]

J. Kaye, S. Beck, A. Barnett, L. Van Muñoz, and O. Parcollet. Automatic, high-order, and adaptive algorithms for brillouin zone integration. SciPost Physics, 2023. doi:10.21468/SciPostPhys.15.2.062.

['5]

RIKUTO OIWA. Generation Scheme of Effective Models Based on Symmetry-Adapted Multipole Basis and Clarification for Universal Properties of Chiral Materials. PhD thesis, 明治大学, 2023. URL: https://meiji.repo.nii.ac.jp/record/17719/files/oiwa_2023_rikou.pdf.